
Labs for the 21st Century

Applying 3Å Molecular Sieve Total Energy Recovery Wheels to Laboratory Environments

Joint Presentation By:

- Mike Dausch P.E.
 - Director of Design & Construction
 Johns Hopkins School of Medicine
- Duane Pinnix P.E.
 - President, RMF Engineering Inc.
- John Fischer
 - Technology Consultant, SEMCO Inc.

Johns Hopkins Ross Research Building: The Owner's Perspective

- 450,000 cfm of combined laboratory/vivarium
- 164 fume hoods, 154 biosafety cabinets and general exhaust through recovery wheels
- Eight SEMCO 3Å molecular sieve coated total energy recovery wheels (14' diameter)
- 13 years of successful operation

Initial Risk Assessment Process:

- Head of Health and Safety, Project Engineer, Project Manager and others visited a successful laboratory installation using the wheel technology
- Johns Hopkins installed a 20,000 cfm pilot system in Animal Virology to allow in-house testing by the Health and Safety Office
- Good results led to the acceptance of the technology for the Ross Research Building
- ASHRAE Paper on results by Hopkins Staff (1996)

Ross Building Life Cycle Analysis

- Total recovery wheels offset 1452 tons of chiller capacity and 680 boiler horsepower
- Provided a positive present value cash flow of
 \$9,100,000 based on 20 year life cycle
- Will provide estimated energy savings in the amount of \$16,600,000 over the 20 year life cycle analysis period

Assumes: inflation at 2.5% and cost of capital of 6%, no taxes

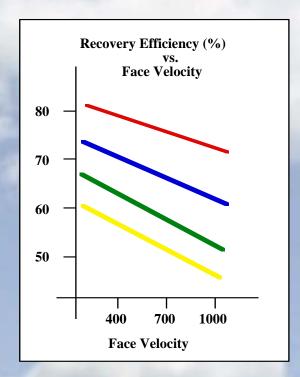
Maintenance Requirements

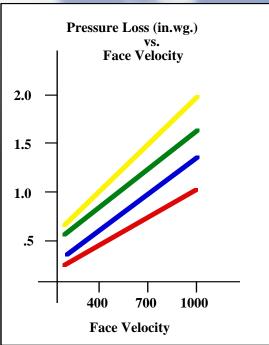
- All wheel maintenance is completed in the supply airstream, no need to go in exhaust
- Bearing maintenance, check drive belt, idler and gear motor
- No need to clean media or change labyrinth seals unless damaged
- Media sections replaceable should damage or corrosion occur
- Purge angle adjusted at commissioning
- Initial 5 year parts and labor warranty

Ross Building Maintenance Cost

- No filters in the exhaust air compartment, current pressure loss is within 10% of what it was when new
- Over 13 years maintenance costs amounted to approximately \$94,000 in total involving:
 - Annual drive belt replacement
 - Frequency drive upgrade
 - Replaced transfer media in three wheels due to damage
- Maintenance cost less than 1% of energy savings over first 13 years (\$94,000/\$9,890,000)

Johns Hopkins Ross Research Building: Designs Engineer's Perspective




Challenges: Laboratory HVAC Design

- High outdoor quantity of air (often 100%)
- Large cooling/heating plant capacity requirements
- Desire for redundant chiller and boiler capacity
- Corresponding high energy and first cost
- Need for tight temperature & humidity control
- High humidification loads (non-boiler steam)
- Optimize occupant safety within allocated Budget

Comparing Recovery Options

Heat Pipe
Run Around Coils

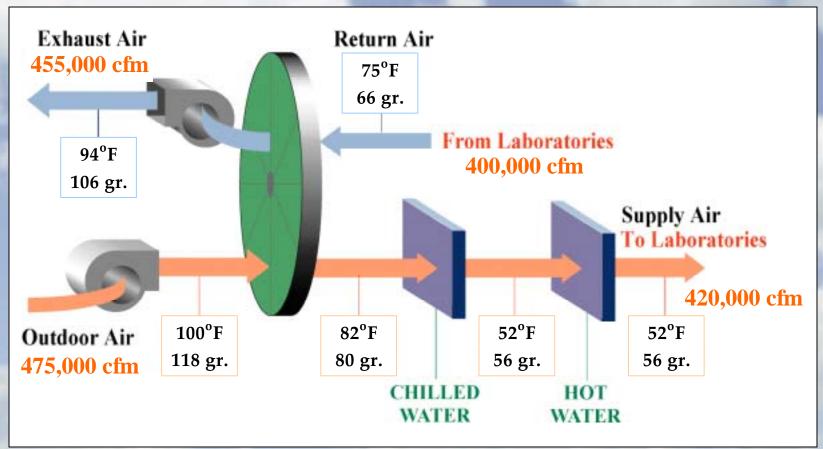
Source: ASHRAE and SMACNA Design Guide

Design Considerations

- NFPA 45 and IMC code compliance
- Program functions: Bio-medical, Chemistry, Vivariums?
- Fume hood and BSC density
- Risk assessment with safety officer
- System configuration penthouse size, height
- Life Cycle Cost Analysis
- Procurement methods

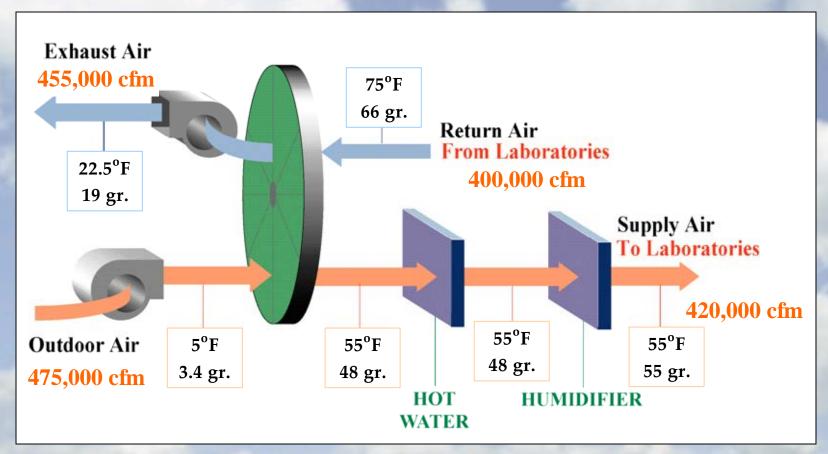
Ross Building: Benefits Recognized

- Economical application of constant volume, 100% outdoor air system to laboratory (preferred by the Head of Health and Safety)
- Significant reduction in first cost, operating cost and life cycle cost. Provided exceptional ROI
- Reduced chiller/boiler capacity requirements allowed for the use of central plant utilities
- Improved humidity control, reduced condensate on cooling coils by 65% and size of steam to steam humidifiers.
- Resolved "freeze-stat" alarms with frozen coils

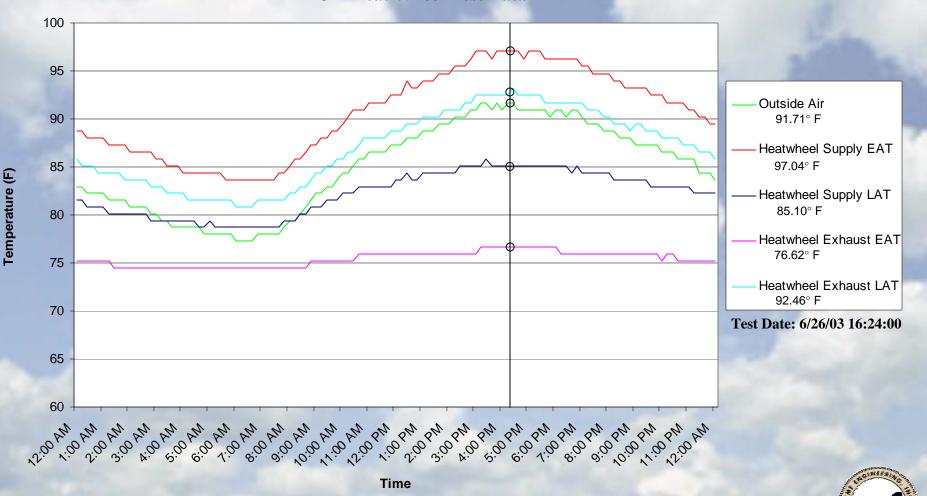


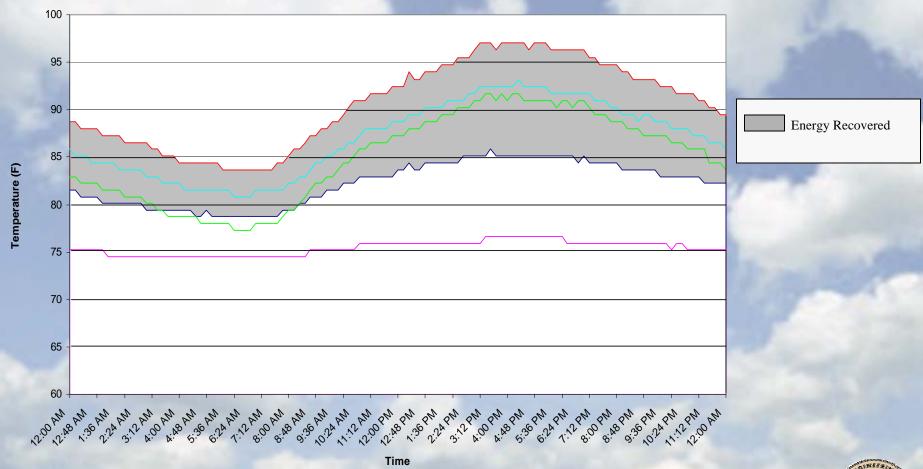
Benchmark Capacity:

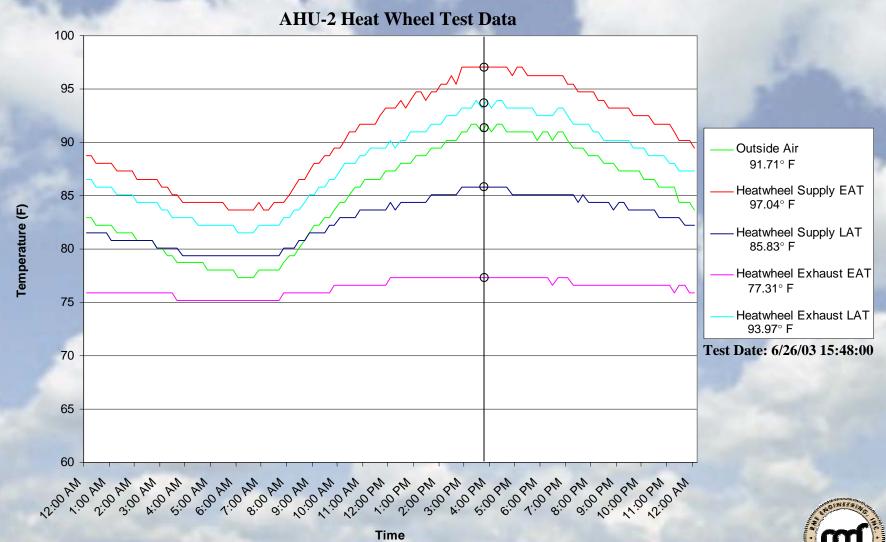
- 335,000 Gross Program Square Feet 580 Program Modules
 13% Lobby/Core, 43% Lab, 23% Circulation, 14% Office, 7% Vivarium
- Fume Hood: 155 Orig.164 Current ⇒ 6% Increase BSC's: 88 Orig.154 Current ⇒ 75% Increase
- 450,000 CFM ⇒ 1.34 CFM/gsf and 9.5 ACH (8.5' Avg. Clg.) 8.5 Watts/gsf
- 3493 Tons Cooling or 96 gsf/Ton wo/HR
 - 1951 Tons Cooling or 172 gsf/Ton w/HR → 44% Reduction
- 27,850 MBH or 83 BTU/HR/gsf wo/HR
 - 5,168 MBH or 15 BTU/HR/gsf w/HR → 81% Reduction

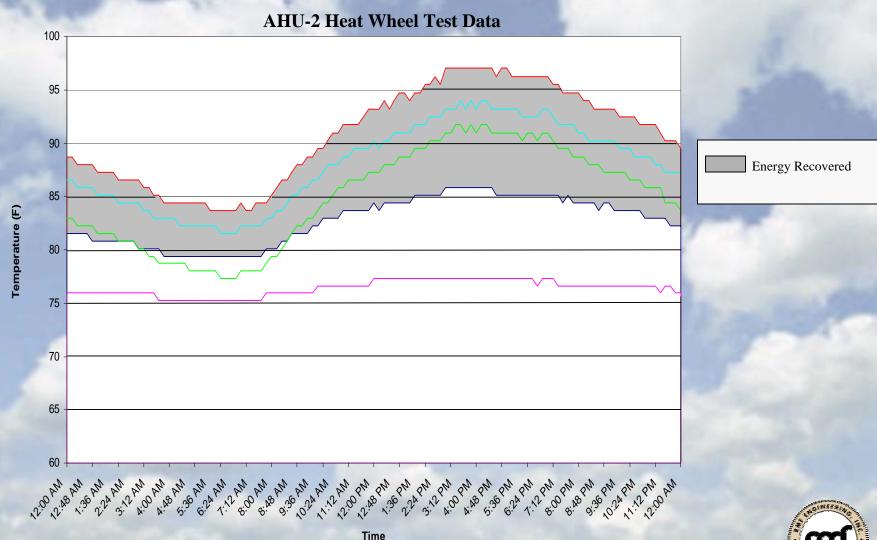

Cooling Mode: Ross Building

Data reflects initial project design conditions for the cooling mode


Heating Mode: Ross Building


Data reflects initial project design conditions for the heating mode

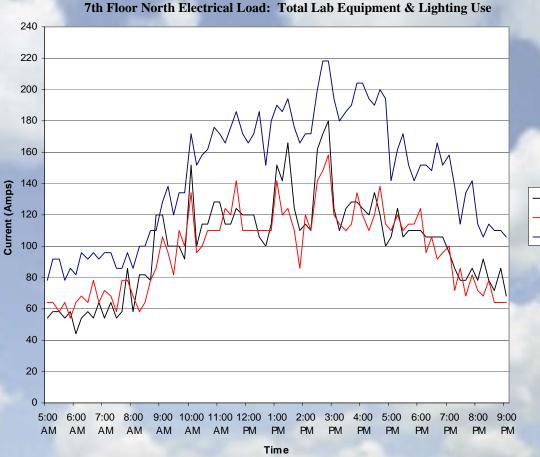

AHU-1 Heat Wheel Test Data



AHU-1 Heat Wheel Test Data

Benchmark Capacity:

• 7th Floor North – 10,545 gsf


Lighting and Equipment:

Maximum – 6.0 w/gsf Average – 3.3 w/gsf Minimum – 1.8 w/gsf

Equipment: Maximum – 5.0 w/gsf

Average – 2.3 w/gsf

Minimum – 0.6 w/gsf

—— A Phase —— B Phase —— C Phase

7/21/03

Benchmark Capacity:

• 7th Floor North − 10,545 gsf

Lighting and Equipment:

Maximum – 6.0 w/gsf Average – 3.3 w/gsf Minimum – 1.8 w/gsf

Equipment: Maximum – 5.0 w/gsf

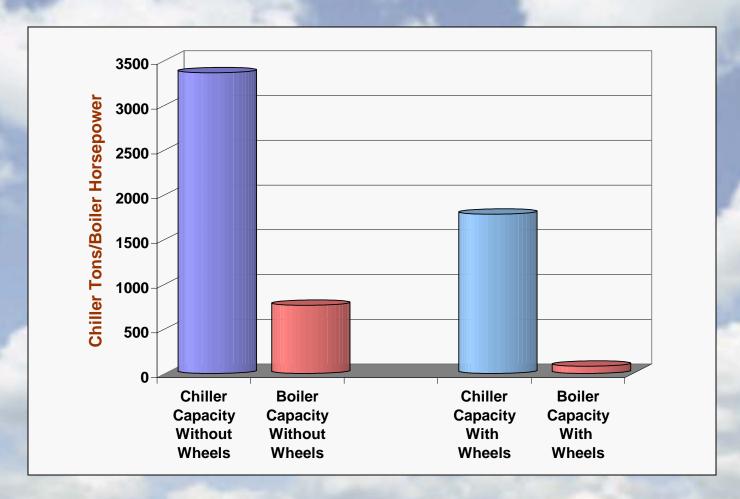
Average – 2.3 w/gsf Minimum – 0.6 w/gsf


• 11th Floor South – 11,225 gsf

Lighting and Equipment:

Maximum – 6.2 w/gsf Average – 4.3 w/gsf Minimum – 2.9 w/gsf

Equipment: Maximum – 5.3 w/gsf


Average – 3.4 w/gsf Minimum – 1.9 w/gsf

7/21/03



Ross Chiller/Boiler Reduction

Ross Energy Cost: Modeling vs. Actual

Analysis based on actual energy cost and wheel performance

Recovery Wheel Economic Summary

Energy Savings			
Annual Chilled water savings	\$226,392		
Annual Steam savings	\$459,440		
Total Annual Energy savings	\$685,832		
Chiller/Boiler Plant Savings			
Chiller Capacity required without wheels	3361		
Chiller Capacity required with wheels	1780		
Tons of Chiller Capacity offset (Tons)	1581		
Boiler Capacity required without wheels	761		
Boiler Capacity required with wheels	82		
Boiler Capacity offset (BHP)	679		

Background for Economic Analysis

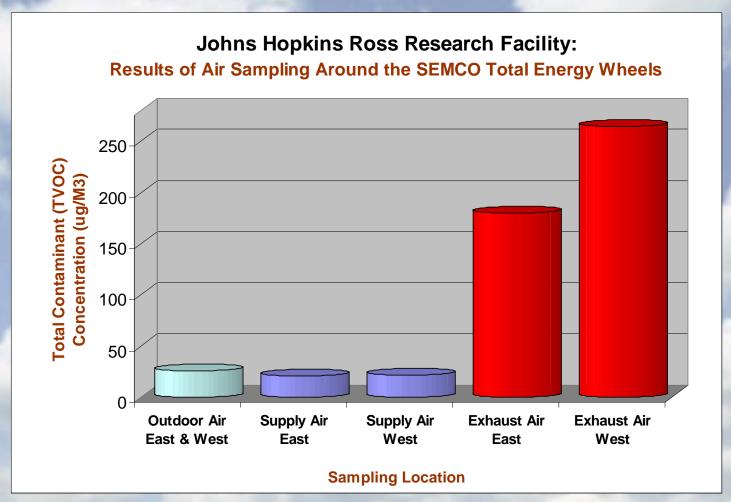
Actual Energy Consumed			
Actual Ross Building Energy Consumption (2002)			
Chilled water	\$726,767		
Steam Baseline (non-AHU) steam consumption	\$624,741 \$556,019		
Net AHU steam consumption	\$68,722		
Vivarium Energy Consumption (2002) (37,000 cfm)			
Chilled water	\$73,038		
Steam	\$40,820		
Main ERU east and West Energy Consumption (2002) (440,000 cfm)			
Chilled water	\$653,729		
Steam	\$27,902		
Total Energy Consumed	\$681,631		

Background for Economic Analysis

Modeled Energy Consumed (With Wheels)		
Main ERU east and West Energy Consumption (2002) (440,000 cfm)		
Chilled water	\$628,344	
Steam	\$25,976	
Total Energy Consumed	\$654,320	

Modeled Energy Consumed (Without Wheels)		
Main ERU east and West Energy Consumption (2002) (440,000 cfm)		
Chilled water	\$854,736	
Steam	\$485,416	
Total Energy Consumed	\$1,340,152	

Documented Energy Recovery Performance After 13 Years of Operation



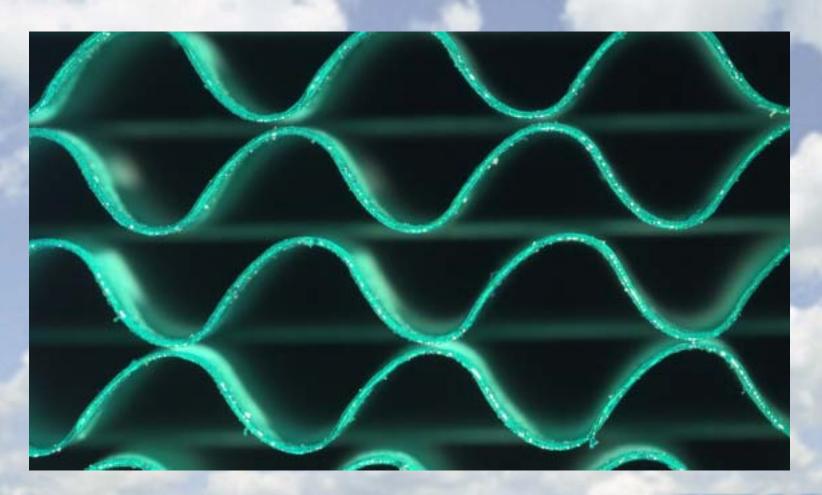
Actual Performance After 13 Years

Note actual trended data and field measurements: July 6th 2003 reflecting current airflow capacities Note airflows shown reflect actual field measurements collected May 13th 2003

Cross-contamination Test Results

Actual field samples collected May 13th 2003 and analyzed via mass spectrometer by GTRI

Johns Hopkins Ross Research Building: Recovery Wheel Risk Assessment

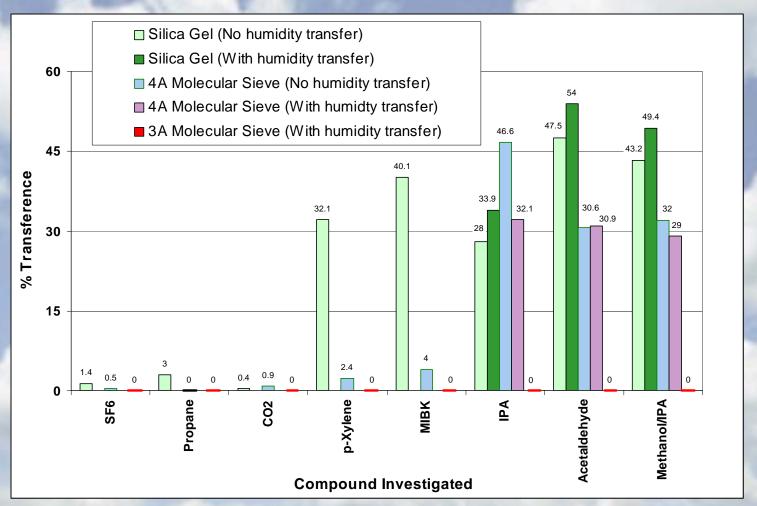


Potential Sources for Carry-over of Airborne Contaminants

- 1) Energy wheel desiccant carry-over
- 2) Purge inefficiency
- 3) Seal leakage from dirty to clean airstream
- 4) Short circuiting between exhaust air outlet to fresh air inlet (system not wheel related)

SEMCO Fluted Media: Face Coating

3Å Angstrom Molecular Sieve Desiccant Coating (SEM 10,000 X)



GTRI Pollutant Carry-over Research

- Desiccant materials other than a 3Å molecular sieve have been shown to transfer up to 50% of the airborne pollutants back to the space
- The 3Å molecular sieve coating was found to limit contaminant carry-over in the lab as well as in numerous field studies

Importance of the 3Å Molecular Sieve

Source: Independent Georgia Tech Research Institute Investigation 1993, 1999

Function of the Purge Section

- Purge dirty air trapped in wheel media as it rotates from the dirty to the clean airstream
- Purge angle adjustable and driven by the pressure differential existing between the outdoor air and return air streams
- Proper setting shown to limit carry-over to well below .045% in actual field commissioning tests

Bacteria and Virus Carry-over

- Organisms are not transferred by 3A molecular sieve, they are too large for the 3 angstrom pore (smallest virus is .3 microns or 3,000 angstroms)
- Particles have been shown to behave like gases and are limited to less than .045% of the exhaust air concentration based on lab and field testing
- Particulate can be easily filtered out, further reducing carry-over with 95.995% efficiency (National Cancer Institute Investigation)

Risk Assessment Questions

- Should all lab hood exhaust be handled through the wheels? Some hood exhaust?
- Can the hoods be safely exhausted to the outdoors?
- If biological, HEPA filtration of supply and return air can drop carry-over limit from <.045% to <.000005%
- Safety benefit of constant volume system vs. variable flow system and complex controls

Assessment Procedure

- Assume worst case spill scenario for facility
- Evaluate chemicals used against resultant TLV levels using the .045% carry-over specification
- Evaluate for health risk and nuisance odors using% TLV and odor threshold values
- Determine which chemicals should be designated to separate hoods
- Choose appropriate system design, for example all exhaust through the wheels or just general exhaust

SEMCO Risk Assessment Database:

			AEI "Worst Case" Spill Scenario ³		
Chemical Compound	Total Quantity ¹	TLV NIOSH ²	Supply Air Concentration	% of TLV	Comments
ACETIC ACID BAR PVC CS6 500ML Total	171 liters	10 PPM	0.05 PPM	0.50%	Odor detection level 2 PPM
ACETIC ACID, REAG PVC CS-6X2.5L Total	8 liters	10 PPM	0.05 PPM	0.50%	"
ACETONE ACS REAGENT 20L Total	580 liters	750 PPM	0.05 PPM	0.01%	Odor detection level 2 PPM
ACETONE GR ACS 1L Total	508 liters	750 PPM	0.05 PPM	0.01%	"
ACETONE, 10L CS/2X10L Total	1100 liters	750 PPM	0.05 PPM	0.01%	"
ACETONE, ACS, REAG CS-4X4L Total	32 liters	750 PPM	0.05 PPM	0.01%	"
ACETONE-D6 (D,99.9%) 10G Total	1920 grams	750 PPM	0.05 PPM	0.01%	"
ACETONITRILE ACS REAGENT 500ML Total	109 liters	40 PPM	0.05 PPM	0.12%	Odor detection level 170 PPM
ACETONITRILE D3, 10GM Total	920 grams	40 PPM	0.05 PPM	0.12%	"
ACETONITRILE REAGENT 500ML Total	16 liters	40 PPM	0.05 PPM	0.12%	"
ACETONITRILE UV 4L Total	3980 liters	40 PPM	0.05 PPM	0.12%	"
ACETONITRILE UV, CS/2X10L Total	3600 liters	40 PPM	0.05 PPM	0.12%	"
ACRYLAMIDE BIS 29:1, 40% 500ML Total	4 liters	0.2 PPM	0.05 PPM	25%	No odor problem
AMMON HYDROX ACS PVC CS6 500ML Total	243 liters	25 PPM	0.05 PPM	0.20%	Odor detection level .04 PPM
BORIC ACID, UPR BIO-REA 500G Total	1 grams	N/A*	0.00 PPM	0.00%	
CHLOROFORM, ACS, REAG CS-4X4L Total	9 liters	10 PPM	0.05 PPM	0.50%	Odor detection level 190 PPM
CHLOROFORM, ACS, REGT 500ML Total	12 liters	10 PPM	0.05 PPM	0.50%	"
CHLOROFORM, REAG SS 500ML Total	16 liters	10 PPM	0.05 PPM	0.50%	"
CHLOROFORM-D (D,99.8%) 50GM Total	16750 grams	10 PPM	0.05 PPM	0.50%	"
DEUTERIUMOXIDE-D2(D,99.9%)100G Total	9200 grams	N/A*			No odor or health problem
DICHLOROMETH W/CYCLOHEX 4L Total	2724 liters	50 PPM	0.05 PPM	0.10%	Odor detection level 100 PPM
DICHLOROMETHANE ACS REAGE 1L Total	511 liters	50 PPM	0.05 PPM	0.10%	"
DICHLOROMETHANE HR-GC 4L Total	16 liters	50 PPM	0.05 PPM	0.10%	"
DIMETHYL SULFOXIDE AR 500ML Total	68 liters	High	0.05 PPM	<.10%	No odor, naturally occurring
DIMETHYLFORMAMIDE 1L Total	6 liters	10 PPM	0.05 PPM	0.50%	Odor detection level 100 PPM
DIMETHYLFORMAMIDE 100ML Total	11 liters	10 PPM	0.05 PPM	0.50%	"
DMSO-D6 10GSRM BTL-RUB SEPTUM Total	4290 grams	N/A*	0.00 PPM	0.00%	
ETHER ETHYL ANHYD AR 500G Total	569 liters	400 PPM	0.05 PPM	0.01%	Odor detection level 1 PPM
ETHYL ACETATE 4L Total	2840 liters	400 PPM	0.05 PPM	0.01%	Odor detection level 7 PPM
ETHYL ACETATE AR SAFE CN-1L Total	5 liters	400 PPM	0.05 PPM	0.01%	"
ETHVI ACETATE CD ACC 11 Total	1931 litare	ANN DDIM	0 05 DDM	0.01%	n

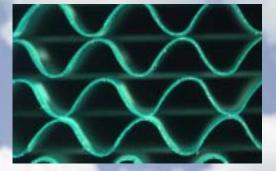
Laboratory Systems Should be Commissioned with Tracer Gas

	Tracer Gas Test Data		
Project Tested by GTRI	Exhaust Air Recirculation	Carry-over	
	to Outdoor Air Intake	Total Energy Wheel	
University Research Laboratory	0.14%	<.015%	
Pharmaceutical Laboratory	0.10%	<.01%	
Industrial Laboratory	0.08%	<.01%	
Analysis Laboratory	0.11%	<.01%	

Note 1: Sulfur Hexaflouride testing shown above completed by the Georgia Tech Research Institute Environmental Monitoring Branch under contract by SEMCO or the facility owner

Note 2: Carry over is defined as the percentage of exhaust air concentration by volume. For example, .01% of 50 parts per million is .005 parts per million or 5 parts per billion

Separating Hood Exhaust from General Exhaust


- Some laboratory projects may involve research that will not tolerate even <.045% carry-over
- Excellent results still obtained with only 50% of outdoor air volume returned to wheels
- Due to high sensible internal loads in most labs, wheels have excess heating season capacity
- Significant chiller/boiler capacity reductions, energy savings and humidity control benefits still exist
- Offers a more conservative approach to lab designs

Labs for the 21st Century

Applying 3Å Molecular Sieve Total Energy Recovery Wheels to Laboratory Environments

